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xn(t) Input data in n-th channel, figure 1

yn(t) Pre-averager output in n-th channel, figure 1

(z)n Pochhammer’s symbol, equation (72)




LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS (Cont’d)

AE Sampling increment in §

Au Sampling increment in u

€y Random phase, equation (16)

[ Gaussian probability density function, equation (38)
$ Gaussian cumulative distribution function, (38)

[ Common input power signal-to-noise ratio, (11)

I Scaled input signal-to-noise ratio, equation (50)
Px Input power signal-to-noise ratio at time k, (8)
3 Arqument of characteristic functions

ay, Mean of v(t), equation (58)

xV Cumulant of v(t), equation (75)

boldface Random variable

overbar Ensemble average




DETECTION PERFORMANCE OF OR-ING DEVICE WITH

PRE- AND POST-AVERAGING: PART I — RANDOM SIGNAL
INTRODUCTION

The need to process and condense large amounts of data is
encountered frequently in modern Navy systems that employ
multiple beams, frequency bins, range cells, et cetera. One way
of accomplishing this goal is by or-ing a number of inputs into a
single output; that is, allow only the largest of a set of
quantities to pass on for further processing and completely
reject the remainder. Hdwever, since this or-ing operation is
highly nonlinear, destroys information, and tends to cause small-
signal suppression, some pre-averaging of the inputs to the
or-ing device is often employed in an effort to build up the
signal-to-noise ratio (SNR) prior to the maximum comparison.
Additionally, at the or-ing output, some additional post-
averaging is frequently employed, once again in an effort to
build up the SNR, this time before a threshold comparison is made
for purposes of declaring a signal present versus absent. The

pertinent block diagram is displayed in figure 1.

There are N channels of real input data available for
p;ocessing, namely, {xn(t)} for 1 < n < N, where time has been
normalized so that time sampling instant t is integer. Under
hypothesis Hy, there is Gaussian noise only in all the inputs,

whereas under hypothesis Hy, a signal is also present in one
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INPUTS AVERAGER OR-ING AVERAGER OUTPUT

Figure 1. Or-ing with Pre- and Post-Averaging

(unknown) channel. The goal of the processor in figure 1 is to
determine signal presence with a high detection probability while
realizing a specifiéd acceptable low false alarm probability.
Each pre-averager accumulates K statistically independent
consecutive samples of its corresponding input xn(t), yielding
output yn(t), which is then subjected to or-ing amongst N

competitors. The or-ing output is
v(t) = max{y (t), -, yy(t)} . (1)

Finally, the post-averager accumulates M samples of its input

v(t), and compares its output w(t) with a fixed threshold.

There is an additional complication of the post-averaging
procedure, which is not indicated explicitly in figure 1. 1In
particular, the or-ing output v(t) is sampled every J-th time

instant and summed over M samples to give processor output'




M-1
wit) =) | v(t-mJ) = v(t) + v(t=J) + +++ + v(t-J(M-1))
n=0

max{y;(t) ,..., y(t)} + max{y,(t-3) ,..., y(t-3)} + -

+

max{yl(t—J(M—l)) reeos yN(t-J(M~1))} ’ (2)

where J is the skip factor. 1If skip facfor J = K, then systenm
output w(t) is the sum of M nonoverlapping adjacent blocks of
pre-averaged data, each of length K, covering a total of KM time

instants.

More generally, for arbitrary J, since the pre-averager spans
a time interval of length K-1, and the post-averager spans time

interval J(M-1), the total observation time is composed of
T = J(M-1) + K | (3)

samples. Alternatively, the last term in equation (2) involves
the quantities {xn(t—J(M—l)—K+1)}, whereas the first term in

equation (2) involves {x (t)}, for a total of T time instants.

More accurately, T can be interpreted as the time-bandwidth
product of the input data utilized by the processor in figure 1.
Hypothesis H, presumes that a signal is present in the same
(unknown) channel for time instants t, t-1,..., t-J(M-1)-(K-1),
for a total of T samples. If J = K, then equation (3) reduces to
time-bandwidth product T = KM, as above; this special case is

called block processing and is the major focus of this study.




The reason for allowing 1 < J £ K is that the possibility
exists that some information may be lost unless intermediate
values of or-ing output v(t) are observed, at least more
frequently than every K samples; see equation (2). However, this
general case causes statistically dependent non-Gaussian random
variables (RVs) to be accumulated in the post-averager, which in
turn leads to an intractable analysis problem. Therefore, the
study of the detectability performance for this particular
feature, namely, skip factor J < K, must be accomplished by
simulation. Even if every xn(t) is statistically independent of
every xm(u) if n ¥ mor t # u, the system output w(t) is a sum of
statistically dependent RVs with non-Gaussian statistics, when
J < K. Finally, the case of J > K is not considered at all,
because that leads to discarding relevant new information in

or-ing output v(t) and a definite degradation in performance.

SCALING PROPERTY
Consider a set of scaled inputs {En(t)} such that
xn(t) = a §n(t) + b, a>?o0, 1 <n<N. (4)

It can then be easily shown that the corresponding pre-averager
outputs yn(t) = a xn(t) + bK, and that the or-ing outputs satisfy
v(t) = a v(t) + bK, leading to output relationship w(t) = a w(t)
+ KM. Thus, w(t) is a scaled version of w(t), along with an

additive constant. Since the transformation between the two




processor outputs w(t) and w(t) is monotonic, the receiver

operating characteristics (ROCs) of the two or-ing processors,
one operating on {xn(t)} and the other operating on {gn(t)], are
identical, regardless of the values of scaling parameters a and b

in equation (4). Then, without loss of generality, the scalings

can be chosen, for example, so that input xn(t) has zero mean and
unit variance under HO' if desired. That stiil allows xn(t) to
have arbitrary mean and variance under Hl. Alternatively, if
xn(t) is always a positive RV, the choice of b = 0 with unit
variance of xn(t) under Hy is a possibility. This still leaves
the variance of xn(t) under Hy arbitrary. The point is to choose
the two free parameters a and b in equation (4) so that the
statistics of {xn(t)} under Hy are as simple as possible; this
feature will be utilized without comment in the future

developnments.

STANDARD OF COMPARISON

The standard of comparison against which to measure system
performance losses is N = 1, no or-ing. Then, for arbitrary
pre-averager weights {gk} and arbitrary post-averager weights
{hm}, the various processor waveforms for N = 1 in figure 1 are

y,(t) = % 9, X (t=k) , v(t) =y, (t) ,

w(t) = ) h_ v(t-m) = c. x,(t-3) , (5)
n D E% j 71




where weights {cj} are the convolution of the pre-averager
weights {gk} and the post-averager weights {hm} (including skip
factor J). For statistically independent time inputs {xl(t)},
the characteristic function (CF) of processor output w(t) is

given, for N = 1, no or-ing, by ensemble average

£,(8) = exp(ikw(t)) = Ij] fx(cji) ' (6)

using equation (5), where fx is the CF of xl(t) under the
appropriate hypothesis, either H, or H,. This particular
processor output CF (for N = 1) can be aécomplished analytically
and then Fourier transformed numerically to get accurate ROCs for

any K, M, and sets of weights {gk} and {hm}.

'~ OUTLINE

For skip factor J = K, némely, block processing in figure 1,
expressions will be derived that allow for accurate evaluation of
the false alarm probability Pe and the detection probability Py
for the decision variable w(t). Furthermore, this will be
accomplished for arbitrary amounts of pre-éveraging K, arbitrary
amounts of or-ing N, arbitrary amounts of post-averaging M, and
arbitrary input SNRs. No approximations are involved, the
analysis is not limited to mean and variance calculations, and no
appeal is made to the central limit theorem. Rather, the
approach employs a judicious combination of analysis with

computer-aided numerical calculations. The accuracy of the end




result is limited only by the computer accuracy. An entire ROC

can be generated in minutes.

There are three different input signal models in additive
Gaussian noise that are of interest here; they are:

(I) Random (Gaussian) signal,

(II1) Phase-incoherent signal, and

(III) Coherent (deterministic) signal.
This report will address all three signal models, but will
concentrate numerically on part I, the random Gaussian signal,
and will present numerous ROCs that completely characterize the
performance of the or-ing system in figure 1. Some related past

work on or-ing is listed in references 1 through 9.

For all three signal models, the optimum processor can also
be determined and its ROCs calculated. Then, the exact losses
that the or-ing procedure causes can be accurately quantified.
That chore will be completed here in part I for the random

signal; parts II and III are reserved for follow-on work.

The analytical approach utilized here can be extended to
include quantizers on the inputs {xn(t)} in figure 1 and still
obtain accurate ROCs for decision variable w(t). 1In fact, not
only can there be arbitrary amounts of quantization (L levels),
but the input probability density functions (PDFs)vcan be
completely arbitrary. Documentation of this work is reserved for

the future.



Some or-ing processors perform quantization on the output
v(t) of the Greatest-Of device in figure 1, prior to post-
averaging. The PDFs at the output of this quantizer are then
collections of impulses, whose areas are governed by the
cumulative distribution functions of v(t) under hypotheses Hy and
H,. I1f the quantizer levels are equally spaced, then the impulse
locations are also equally spaced, and a complete analytic
approach is possible, all the way to processor output w(t) in

figure 1. See references 3 and 4, for example.




INPUT DATA MODELS

In the following, 9y and hk are independent zero-mean unit-
variance Gaussian RVs, and e, is an exponential RV with unit

mean, that is, with PDF exp(-u) for u > 0.

RANDOM GAUSSIAN SIGNAL IN GAUSSIAN NOISE

In the signal channel, the system input to figure 1, at time

ty under hypothesis Hy, is an envelope-squared variate

2, (b, + hk)z] , (7)

oof

X, = xn(tk) = [(ak + gk)

where signal components a and bk are independent zero-mean
Gaussian RVs with common variance P’ and 9, and hk are additive

Gaussian noise components. The input mean is then

x, = 1 + Pk (8)
for signal present. Since X, is an envelope-squared quantity,
P is an input (per sample) power SNR measure.

The CF of X under Hy is, from equations (7) and (8),

—_— 1
fk(E) = exp(lﬁxk’ =1 - 1iE(1 + pk) : 9)

Since this CF corresponds to an exponential RV with mean 1 + Pl s

it is possible to use, instead of form (7), input data value




x, = (1 + p,) e (10)

both for analysis as well as simulation purposes under H,. For

the noise channels, P = 0 and X, = € under‘Ho.

When Pp = P for all k, that is, constant signal powers with

time, the pre-averager output for the signal channel under Hy is

=

-

=(1L+p) Y e =(1L+p)y, (11)

X
k k=1

k=1
where y° is the corresponding noise-only pre-averager output.
This property can be used advantageously for both analysis as
well as simulation purposes. The ROCs can be parameterized by

input power SNR p; this is the mathematical setup for part I.

ALTERNATIVE ADDITION OF ENVELOPES FOR RANDOM GAUSSIAN SIGNAL

If the input data value in fiqure 1 is an envelope instead,
denote it by X = (xk);5 in terms of the RV in equation (7). This

means that X, can be generated alternatively according to

x, = (1+ pk);5 et . | (12)

The mean-square value of envelope x, is then

2 ,
§k=1+pkl (13)

where Pk is an input power SNR measure.

10




For the noise channels, Py = 0, thereby yielding envelope
X, = [l( 2 hz))!5 = e (14)
L I VAL O s

where e, is a unit-mean exponential RV.

When P = P for all k, the pre-averager output for the signal

channel under H1 is
S IR S 5 o
Y=2 % =(1+p)?)  e=(1+p7%y, (15)

where xo is the corresponding noise-only pre-averager output.

The ROCs can be parameterized in terms of input power SNR measure
p. The investigation in this report on the random signal, part
I, will not address the sum of envelopes, as given by equation
(15), but will concentrate on the sum of envelopes squared, as

given by equation (11), with constant powers PR = P-

PHASE-INCOHERENT SIGNAL IN GAUSSIAN NOISE

In the signal channel, the input for this signal model, part

II, at time ty under Hy is an envelope-squared variate

=

% = z[(9y + &y cose)? + (b + A sing)?] (16) -

where signal amplitude A, is nonrandom, and phase ek is a RV with

arbitrary PDF, that is, incoherent phase. The input mean is

11




x, =1 + % Ai =1 + Pr ¢ (17)

regardless of the value of O - Since X, is an envelope-squared

quantity, P = Ai/z is an input (per sample) power'SNR measure.

The CF of Xy under Hl' conditioned on a particular value of

RV . is, by use of equation (16),

- i = —2 L&
£, (E|6y) = SXBIIER) = 7% exp (o) 7= ) - (18)
But, since the right-hand side of CF (18) is independent of O/

it is possible to use the data value

_ 1 2 2

x, = 5[(gk + a4 hk] (19)
for the signal channel input under Hl’ On the other hand, for
the noise channels, Ak = 0 and CF (18) reduces to (1 - iﬁ)-l,

which corresponds to a unit-mean exponential RV. Therefore, for

the noise channel inputs, use the quantity
X, =€ . (20)

When A, =2 for all k, constant signal amplitudes with time,

the pre-averager output for the signal channel can be expressed

Yy = X =% (g, + h) + A g, + K 3
i *x T 74y (%t Ry ¢ % 2
K 2
=y +AY g +K3, (21)

12




© is the corresponding noise-only pre-averager

under Hl' where y
output. (However, the k-th term in the sum for y cannot be

replaced by e, + A g, *+ A2/2, where e, is an independent

exponential RV, because the CF of this latter combination is

2

1 , (22)

T -3¢ exPle 18(1 + i8)] , o =

T

which is not identical in form to equation (18). The two CFs
do, however, have the same mean and variance.) The ROCs for
figure 1 using pre-averager (21) can be parameterized by input

amplitude SNR measure A or by input power SNR measure p.

Because of the way parameters {pk} appear in equation (18),

the CF of the pre-averager output can be found in the closed form
., -K it K
£,08) = (1-i8)7% exp(og To7F) + e = 23 ey -

Therefore, all the following results pertaining to the phase-
incoherent signal with equal SNRs p and sums of squared-envelopes
actually hold for arbitrary SNRs {pk}, if p is replaced by Pg/K-
However, this observation is of limited utility unless all of the
M sums of {pk}, one for each post-averaging interval, are

identical.

ALTERNATIVE ADDITION OF ENVELOPES FOR PHASE-INCOHERENT SIGNAL

If the input data value in figure 1 is an envelope instead,

denote it by x, = (x,)* in terms of the RV in equation (16).

13




Since the conditional CF of xy is independent of e/ according to
equation (18), the conditional PDF of X, is independent of ek.
Therefore, any nonlinear transformation of Xy such as X will
also have a conditional PDF independent of ek. This means that

X, can be generated alternatively according to
1 2 . 27V

x = (3[tay + 37 + ng]) (23)
under H;. The mean-square value of envelope x, is then
Z-o1+L1a2:14, (24)
~k 2 7k T k '’
where Px is an input power SNR measure.

For the noise channels, A, = 0, thereby yielding envelope

%
= (142 =

5 = (3toy + B = ef (25)

where e, is a unit-mean exponential RV.

When A, =A for all k, the pre-averager output for the signal

channel under H1 is

K K 2.%
X=E§k=E(%(gi+hi)+Agk+%] ’ (26)

which cannot be simplified or expressed in terms of alternative
RVs. The ROCs can be parameterized in terms of input amplitude

SNR measure A or in terms of input power SNR measure p = A2/2.

14




COHERENT (DETERMINISTIC) SIGNAL IN GAUSSIAN NOISE

In the signal channel, the input for this signal model, part

111, at time tk under Hl is amplitude variate
X, =g, + dk ’ (27)

where dk is nonrandom. The input mean is EI = dk' while the

input variance is var(xk) = 1. Thus, dk is an input amplitude

SNR measure, while di (or di/Z) is an input power SNR measure.
For the noise channels, X, = Gy with zero mean and unit

variance. Thus, dk can be interpreted as a per-sample difference

in mean inputs, divided by the common input standard deviation.

When dk = d for all k, constant signal amplitudes with time,

the pre-averager output under H1 for the signal channel is
K K o
Yy=) _ x, =) g +Kd=y +Kd, (28)

where y° is the corresponding noise-only pre-—-averager output.

The ROCs can be parameterized by input amplitude SNR measure d or
input power SNR measure d2 (or d2/2). More generally, the single
parameter value dT = I dk characterizes the performance of the
processor when the amplitude SNRs {dk} are unequal and arbitrary.
However, this observation is of limited utility unless all of the
M sums of {dk}, one for each post-averaging interval, are

identical.

15




OPTIMUM PROCESSING OF AVAILABLE DATA

The optimum processors for all three signal models are
derived in appendix A for the case where channel occupancy
jdentification is required, as well as the alternative case where
channel identification is irrelevant. For all situations, the

optimum processor is essentially given by threshold comparison

max {’Ll_; xn(t)} >V (29)
1<n<N(t=1

see equations (A-13), (A-19), and (A-26). This operation is
equivalent to doing all pre-averaging and no post-averaging in
figure 1, that is, take K = T and M = 1. Doing so defers the
nonlinearity (or-ing) until after all possible linear combining
(pre-averaging) has been accomplished. This case will be
thoroughly numerically evaluated and will serve as the basis of
comparison for the various combinations of pre-averaging and

post-averaging, that is, M > 1 or K < T.

16




PERFORMANCE ANALYSIS FOR BLOCK PROCESSING

Due to the pre-averaging, each RV yn(t) in figure 1 is a sum
of K independent RVs with identical statistics. Also, all N
channel inputs are statistically independent of each other.
In order for or-ing to be present, N > 2 is required in the
following considerations. (The special case of N = 1, no or-ing,

has already been addressed in equations (5) and (6).)

For a noise-only channel, let Py be the PDF of pre-averager
output yn(t), and let o be the corresponding cumulative
distribution function (CDF). For signal present in channel 1,

let 13 and cy be the PDF and CDF of yl(t), respectively.
The or-ing output v(t) in figure 1 is
v(t) = max{y, (t), ...,y (£)} . | (30)
Its CDF for signal present, that is, hypothesis Hy, is
¢, (u) = ¢ (u) [eg(u) ¥t | (31)
vl 1 0 !
which leads to the corresponding PDF of v(t) under H, as

cgl(u) = pl(u) [co(u)]N'1 + °1(“) (N-1) [c:O(u)]N—2 po(u)

pvl(u)

N-2

[co(u)l [pl(U) Colu) + (N-1) po(u) cl(u)] . (32)

The signal-absent PDF of v(t) under Hy follows immediately as

17




Po(u) = N pg(u) [eg(w)I¥h . (33)

The CF of or-ing output v(t) is given by Fourier transform

£,(E) = Sxp(IEv(E)) = | du exp(iZu) p (u) , (34)

where either relevant form, P,p ©F Pyy above, is to be used.
Finally, for block processing, J = K, there is no overlap of the
data used in the post-averager, meaning that processor output

w(t) is the sum of M independent, identically distributed RVs.

Therefore, the CF of the decision variable w(t) is simply

M
£(E) = [£(E)] . (35)

One final Fourier transform is required to manipulate CF
fw(E) into the desired exceedance distribution function (EDF) of
processor output w(t); see reference 9. This EDF will be the
falsé alarm probability Pe or the detection probability Pyr

depending on whether PDF P, ©F pvl'is used, respectively.

The fundamental Fourier transform in equation (34) will
generally have to be accomplished numerically by means of a fast
Fourier transform (FFT). 1If pre-averager output statistics Py
and cy can be found in closed form or readily computed form, this
cascaded FFT approach will lead to exact false alarm probability
results for the or-ing processor in figure 1. If pre-averager
output probability functions P and ¢, can also be readily

evaluated, accurate detection probability results can be

18




calculated as well. Some important numerical considerations for

this cascaded FFT approach are presented in appendix B.

For the special case of M = 1, no post-averaging, output RV

w(t) = v(t), and the corresponding EDFs follow, for any K, N, as
e, (W) = 1 - ¢c;(u) [eg(wi™t, (36)
e.(u) =1 - [co(u)IV (37)

w0 0 '

Now, return to arbitrary values of K, N, and M, and
specialize the general results above to the three signal models

of interest. J is set equal to K, that is, block processing.

COHERENT (DETERMINISTIC) SIGNAL

Define d = /K d and auxiliary Gaussian functions

X
o(x) = (21) 7% exp(-x2/2) , #(x) = j du é(u) . (38)

Then, for constant signal amplitudes, the requisite probability

functions for pre-averager outputs {yn(t)} for any K, all u, are

2
Po(w) = — exp(- 3g) - 7% +(7k) - (39)
2
priw) = — o exp(- L) - 2 ek - ) (40)
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colw) = 8(78] ,  cj(u) = &(4E - 4] . (41)

Using equations (33) and (32), the PDFs for or-ing output

v(t) for any K and N, under H0 and Hl' are, respectively,

ot = 7 ¢ (78) o(R)"
ra) = 7 R DGk - @) o) ¢ e o) ok - o)
(43)
The corresponding CFs are
£,0(8) = N [ dx exp(igr’x) ¢(x) s(x)"1, (44)

N-2 [g(x-d) ®(x) + (N-1) é(x) &(x-d)].

(45)

£,,(8) de exp(iEKIx) #(x)
When M = 1, the EDFs in equations (36) and (37) can be combined
with the results in equation (41) to immediately yield closed

form expressions for Pf and Pd for any K, N, and SNR p.

For the special case of N = 2, these integrals can be
evaluated in terms of the error function of complex argument,

w( ); see reference 10, chapter 7. There follows

exp(-v2) w(vy) , (46)

fvo(i)
and

£,,(8) = 3 exp(=v2=v24i2yv) [wly+iv) + wly-iv)] , (47)

20




where vy = K%E/Z, v = K%d/z. The amount K of pre-averaging is
arbitrary. The CFs of decision variable w(t) are given by the
M-th powers of the above two results under H0 and Hl’

respectively, when N = 2.

For N = 1, no or-ing, and K and M arbitrary, these results

simplify to system output PDF

1 (u - Td)
p.(u) = —2— expf- =T}  ¢_xm, (48)
wl (ZnT)% ( 2T ]
and output EDF
Py(v) = _[ du p_,(u) = @(qd - é’) , q=T% = (RM)? . (49)

Obviously, for N = 1, only the product KM matters, at least for

unity weights in both the pre- and post-averagers.

PHASE-INCOHERENT SIGNAL

Some of the following was presented in reference 3, pages
52 and 53. Define p = K p with (reference 10, equation 6.5.11)

k

X
e (x) = T - (50)

w[’]s

=0

Then, for constant signal amplitudes and u » 0, the pertinent

PDFs and CDFs of {yn(t)} are
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K-1
po(u) = S 2R) ¢ ) = 1 - exp(-u) ey j(w) ,  (51)
R-1
py(w) = (%) 2 exp-u-p) 1,y (20w%) . (52)
. xy K i
£,(8) = (1 - ig) exp (o I‘:‘Tz] , (53)
e (w) = 1 - g ((2p)%, (20)%) . (54)

The PDFs for or-ing output v(t) for u > 0 are then

w1 exp(-u) (1

Pyolw) = N —g1);

- exp(-u) e, (w1, (55)

R-1
p,q(u) = [1 - exp(-u) ep_q (w172 [[%) 2 exp(-u-p) IK_l[z(gu)*]
R-1
u exp(-u) 5 3
x [1 - exp(-u) ep_j(u)] + (N-1)2—2XRI=W (1.0 ((2p)7%, (2u) N] -
(56)

In the special case of K = 1, that is, no pre-—averaging, the
CF of v(t) with or-ing and signal present is available in closed
form by Fourier transforming pvl(u) to obtain, using reference

11, equation 6.631 4, and reference 12, equation (24),

1 (—1)k+1 -

(V) o= oo (e T =) 7

. N—
£,0(8) = 18 3

o

for any N > 1. The mean of v(t) with signal present follows as
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N-1

By =1+ 0+ %;% [ ;1] E%il%—;T exp[—p K—%—TJ . (58)

Finally, when p = 0, equation (57) reduces to the more useful

form for the CF as

(59)

=1 L

f008) = [TT0 - 8] s -

n=1 n=1

this alternative CF form will be derived in the next subsection.

For the special case of K = 2 and no signal pfesent, the CF

of v(t) is available by Fourier transforming PDF pvo(u) to get

_(-n” & k+1
£ ,(&) = N! . (60)
vo : (N-1-n)1 k:(:J (n-k)! (n+1-ig)K+2

This result holds for arbitrary amounts of or-ing, N > 1.

For N = 2, the CF of v(t) under Hl is available (after

considerable labor) by Fourier transforming PDF pvl(u) to get

K-1
£p(8) = 'z—ngﬁTi' exp (-2 :—;) 1 (=1 wle %)
K-1
+ ;% exp o ;f] T 2T exp (- %) {;_0 (Pkek) =1 = (zl—:z] (61)

for any K > 1, where z, = 1 - i, z2y = 2 - i§., For K = 2, the

mean follows as Hyp = 2(1 + p) + exp(-p) (6 + p)/8, using p = 2p.
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For N = 2 and signal absent, the Fourier transform of PDF

pvo(u) yields CF

2 K-14+%k 1
£ (8) = ——————o - 2 ’ (62)
vo (1-ip% - 7 (2 - ig)K*k
with mean
R-1
K + k 1
Hyo = 2K (1 - kE___(:) [ k ] oK +k'+1] . (63)

This form for CF fvo(a) in equation (62) is not obtained by
setting p = 0 in equation (61); however, numerical investigation
of both forms reveals they are equal. For K = 2, the CF in

equation (62) further specializes to

2 2 4
£ (E) = - - : (64)
vO (1 -i8)2 (2 -ig? (2 -ig3

The CF of decision variable w(t) for signal present is given

by

M
£,108) = [£,,(8)] . (65)

when CF fwl(a) is available, a Fourier transform will yield the
detection (and false alarm) probabilities for any K, N, and M.
When M = 1, the EDFs in equations (36) and (37) can be combined
with results (51) and (54) to immediately yield closed form

expressions for Pe and Pd for any K, N, and SNR op.

24




When N = 1, no or-ing and K and M are arbitrary, the results

simplify, respectively, to PDF and EDF

-1
pyy(w) = () 2 exp(-u-B) IT_I(Z(Bu)!E) for u > 0 , (66)
patv) = [aup () = o ((28)%,(2v)%] for v >0, (67)

v

where T = KM, B = Tp = KMp. Obviously, for N = 1 here, only the
product KM matters; this presumes unity weights in both the pre-

and post-averagers.

RANDOM GAUSSIAN SIGNAL

Some of this material appeared in reference 3, pages 51 and
52. Define a = 1/(1 + p). Then, for constant signal powers and

u > 0, the pertinent PDFs are

K-1
po(u) = T 8XRL=W)  o (u) = 1 - exp(-u) e (u) ,  (68)
ak uK"1 exp(-au)
pl(u) = ®-1)! ' cy(u) =1 - exp(-au) e, ,(au) . (69)

The PDFs for or-ing output v(t) are, under hypotheses Hj and

Hl' respectively,

K-1

Pyplu) = N = (Kfi“)’g'u) [1 - exp(-u) eK_l(u)]N_1 ' (70)

KN-1

which behaves as u as u » 0+, and

25




N-2 uf 1 K
Pyq(w) = [1 = exp(-u) ey  (w)IN? P [a exp(-au)

x [1 - exp(-u) ey _;(u)] + (N-1) exp(-u) [1 - exp(-au) eK_l(au)]).
(71)

In the special case of K = 1, that is, no pre-averaging, the
CF of v(t) with or-ing and signal present is available in closed
form by Fourier transforming PDF Pyq to get (reference 11,

equations 3.191 3 and 8.384 1)

i 1
£ . (E) = (1) S S — , (72)
vl N-1 ((a—lﬁ)N (1-1E)N_1]

for any N > 1. Here, (z)n_= z(z+l) <<+ (2+n-1) is Pochhammer’s
symbol; see reference 10, equation 6.1.22. When p = 0, then

a = 1 and this CF reduces to

(1) N . -1

The CF of decision variable w(t) for signal present is given

by closed form

M
£,1(8) = [£,,(8)] (74)

in this special case of K = 1, where CF fv1 is given by equation
(72). Then, one single Fourier transform will yield the
detection and false alarm probabilities (Pd and Pf) for any N and

M, that is, arbitrary amounts of or-ing and post-averaging.
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When M = 1, the EDFs in equations (36) and (37) can be combined
with results (68) and (69) to immediately yield closed form

expressions for P_. and P, for any K, N, and SNR p.
p £ d

The cumulants {xv(k)} of v(t), for signal present, are rather
involved, even for K = 1. The mean and variance are presented
below, while the moments and cumulants of general order k are

derived in appendix C. For K =1,

N-1 (1)1

1 : ~

xv(l) = E=1 ST with r = —737;— ' (75)
N 1 1 2 N 1

X (2) =2, =5 - (r-§) - 205 1 sy - (76

For signal strength p = 0, a = 1 and the k-th cumulant of

v(t) is, for K = 1,

X,(k) = (k-1)t § —¢ for k » 1 . (77)

These results allow for arbitrary amounts of or-ing, that is,

N > 1.

For the special case of K = 2 and no signal present, the CF
of or-ing output v(t) is available in closed form by Fourier

transforming PDF pvo(u) to get

fvo(i) = N! 2:: (Ni i;) Z?: ktl X372 ° (78)
k=0 (n-k)! (n+l-ig)"*
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This result holds for arbitraLy amounts of or-ing. CF fvl(a) for
K = 2 can also be found in closed form, although it is more
complicated than the result above. Larger values of K yield
progressively more complicated closed forms for fvo(i) and
fvl(a). For example, pvl(u) for K = 2 and N = 2 can be Fourier

transformed to yield CF

2 2,. 3
fvl(E) _ 1 s+ a s + (1+a” )il -~ (1+§) , (79)
(1 - i§) (a - i) (1 + a - 1ig)
with mean
., _,1l+3a+3a%+3a%+al 104 220 4 180% 4 757 + o°
vi a (1 + a)3 (2 + p)°
(80)
When N = 1, no or-ing and K and M are arbitrary, these
results simplify to processor output PDF
T T-1
P, (u) = a u (T_i??(_au) for u > 0 , (81)
and EDF
Pg(v) = [ du p (u) = exp(-av) ep_ylav) forv >0, (82)

v

where T = KM. For N = 1, only the product KM matters; the above
results presume unity weights in both the pre- and post-

averagers.
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QUANTITATIVE PERFORMANCE RESULTS

This section gives specific quantitative detectability
results for or-ing with various amounts of pre-averaging K and
post-averaging M. In particular, numerous ROCs are presented in
appendices D, E, F, and G for the cases of KM = 4, 16, 64, and
256, respectively. The particular cases run are indicated in
table 1; a total of 124 ROCs are represented. For N = 1, since
only the product KM matters, only one ROC need be presented (the

first curve in each appendix) under the title labeled M = 1.

Table 1. Cases Run

K M N
4 1 1,2,4,8,16,32 Appendix D
2 2 1 + 15 ROCs
1 4
16 1 1,2,4,8,16,32 Appendix E
8 2 1 + 25 ROCs
4 4
2 8
1 16
64 1 1,2,4,8,16,32 Appendix F
32 2 1 + 35 ROCs
16 4
8 8
4 16
2 32
1 64
256 1 1,2,4,8,16,32 Appendix G
128 2 1l + 45 ROCs
64 4
32 8
16 16
8 32
4 64
2 128
1 256
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NUMERICAL APPROACH

Wwhenever the CF of or-ing output v(t) can be derived in
closed form, such as in equations (72), (73), (78), or (79), it
is used directly in equation (35) to find the CF of decision
variable w(t). However, when this is not possible, the closed-
form results for the or-ing output PDFs given in equations (32)
and (33) are used, instead, in the cascaded FFT procedure
outlined in equations (34) and (35). In the former case, the
fundamental sampling increment is AE' starting in the CF domain,
whereas in the latter case, the fundamental sampling increment is
Au' starting in the PDF domain. The pertinent numerical
parameter values used for each case investigated are indicated on

the appropriate ROCs in appendices D through G.

REQUIRED INPUT SIGNAL-TO-NOISE RATIOS

The numerous ROCs in appendices D through G enable a user to
easily investigate and determine the amount of system input SNR
required for the or-ing device to achieve a specified level of
detectability performance, in terms of a desired false alarm
probability Pe and detection probability Py, oOver a wide range of
parameter values. In an effort to partially condense this
voluminous information, a standard operating point (SOP) is
defined here as Pg = 1E-3, Py = 0.5, and a high-quality operating
point (HOP) is defiﬁed as P = 1E-6, Py = 0.9. The corresponding

required values of input SNR p(dB) = 10 log(p) = 10 1og(oz/ai),
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as determined from the ROCs in appendices D through G, are listed
in tables 2 through 9. (These accurate values were interpolated
from the ROCs while the false alarm and detection probability
numbers, Pf and Pd’ were still resident in the computer; eyeball
interpolation from the plotted ROCs cannot be done this

accurately.)

These input SNR requirements are plotted in figures 2 through
9. As expected, the required input SNR p increases monotonically
with the number N of channels or-ed if K and M are held fixed.
Also, the required input SNR p increases monotonically with the
amount M of post-averaging employed, if N and KM are held fixed;
alternatively, the required input SNR p decreases with the amouht
K of pre-averaging employed, if N and KM are held fixed. The

exact rates can be determined from figures 2 through 9.

Table 2. Required Input SNR p(dB) for Pe = 1E-3, Py = 0.5,
KM = 4, Gaussian Signal

K M N=1 ©N=2 N=4 N-=28 N =16 N= 32
4 1 4.08 4.46 4.81 5.13 5.42 5.70
2 2 4.08 4.66 5.17 5.62 6.02 6.38
1 4 4.08 4.82 5.47 6.05 6.55 7.00

Table 3. Required Input SNR p(dB) for Pf = 1E-6, Pd = 0.9,.
KM = 4, Gaussian Signal

K M N=1 N =2 N =4 N =28 N = 16 N = 32
4 1 10.50 10.67 10.84 11.00 11.16 11.31
2 2 10.50 10.81 11.10 11.37 11.59 11.83
1 4 10.50 10.96 11.37 11.73 12.08 12.39
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Table 4.

OO BN =

Table 5.

OO BN =

Table 6.

oaNE =2

16

64

Required Input SNR p(dB) for Pf = 1E-3, Pd =
KM = 16, Gaussian Signal

N =2

0.31
0.53
0.73
0.91
1.03

N = 4

0.61
1.00
1.39
1.72
1.98

N =28

0.89
1.42
1.95
2.42
2.81

N = 16

1.14
1.79
2.43
3.02
3.51

0.5,

1.38
2.12
2.86
3.54
4.12

Required Input SNR p(dB) for Pf = 1E-6, Pd =0.9,

4.51
4.51
4.51
4.51
4.51

KM = 16, Gaussian Signal

N =2

4.65
4.78
4.95
5.13
5.27

N =4

4.79
5.03
5.34
5.67
5.95

N =28

4.92
5.26
5.69
6.15
6.55

N = 16

5.05
5.47
6.01
6.57
7.08

5.17
5.67
6.29
6.94
7.54

Required Input SNR p(dB) for Pf = 1lE-3, Pd = 0.5,

-3.58
-3.58
-3.58
-3.58
-3.58
-3.58
-3.58

KM = 64, Gaussian Signal

N = 2

-3.28
~3.06
~2.83
~2.61
~2.44
~2.33
~2.26

N =4

-3.00
-2.61
-2.19
-1.80
~1.45
-1.18
-1.03

N =8

-2.74
-2.22
-1.66
-1.11
-0.61
-0.21

0.07

N = 16

-2.52
-1.89
-1.20
-0.53
0.09
0.61
1.01

-2.31
-1.58
-0.81
-0.04
0.68
1.32
1.83




Table 7. Required Input SNR p(dB) for Pe = 1E-6, Py = 0.9,
KM = 64, Gaussian Signal

K M N=1
64 1 0.12
32 2 0.12
16 4 0.12

8 8 0.12

4 16 0.12

2 32 0.12

1 64 0.12

N =2

0.24
0.36
0.52
0.72
0.92
1.08
1.18

N =4

0.36
0.57
0.88
1.24
1.60
1.91
2.15

N =8

0.47
0.77
1.19
1.69
2.19
2.64
3.00

N = 16

0.57
0.96
1.48
2.08
2.70
3.27
3.73

Table 8. Required Input SNR p(dB) for Pf = 1E-3, Pd =

K M N=1
256 1 -6.87
128 2 -6.87
64 4 -6.87
32 8 -6.87
16 16 -6.87
8 32 ~-6.87
4 64 -6.87
2 128 -6.87
1 256 -6.87

KM = 256,

N = 2

-6.57
-6.37
-6.12
-5.89
-5.67
-5.52
-5.42
-5.36
-5.36

Gaussian
N = 4

-6.32
-5.94
-5.51
-5.08
-4.69
-4.35
-4.10
-3.96
-3.90

Signal
N =8

-6.07
-5.57
-5.00
-4.42
-3.86
-3.36
-2.97
-2.69
~2.53

-4.56
-3.18

-1.33

Table 9. Required Input SNR p(dB) for Pf = 1E-6, Pd =

K M N =1
256 1 -3.57
128 2 -3.57
64 4 -3.57
32 8 -3.57
16 16 -3.57
8 32 -3.57
4 64 -3.57
2 128 -3.57
1 256 -3.57

KM = 256,

N =2

-3.46
-3.36
-3.18
-2.99
-2.77
-2.57
-2.42
-2.30
-2.25

Gaussian
N =4

-3.36
-3.15
-2.86
-2.49
-2.10
-1.72
-1.40
-1.16
-1.01

Signal
N =38

-3.25
-2.98
-2.57
-2.07
-1.54
-1.01
-0.54
-0.16

0.10

N = 16

-3.15
-2.81
-2.31
-1.70
-1.06
-0.41
0.19
0.69
1.07

0.68
1.13
1.74
2.43
3.14
3.80
4.37

-3.06
-2.64
-2.07
-1.39
-0.65
0.10
0.80
1.41
1.90
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TRADEOFF BETWEEN PRE- AND POST-AVERAGING

For a fixed amount of total time-bandwidth product, that is,
KM constant, it is possible to shift some of the pre-averaging to
post-averaging, or vice-versa. For example, if KM = 16, this
could be accomplished by taking K = 16, M = 1, which corresponds
to no post-averaging, and switching to K =1, M = 16, which
corresponds to no pre-averaging. Alternatively, intermediate

values such as K = 4, M = 4, could be used, still keeping

KM = 16.

In all cases, increasing M at.the sake of K requires larger
input SNRs to maintain the same operating point; see figures 2
through 9. This is related to the fact that the optimum
processor corresponds to conducting all pre-averaging before any
nonlinear operations; see appendix A. For example, if KM = 16,
in order to maintain the SOP, table 4 indicates that increases of
0.72 dB, 1.37 4B, 1.92 dB, 2.37 dB, 2.74 dB are required for
N=2, 4, 8, 16, 32, respectively, if the switch is made from all
pre-averaging to all post-averaging. Alternatively, for the HOP,
the corresponding differences in table 5 are smaller (0.62 dB,
1.16 dB, 1.63 dB, 2.03 dB, 2.37 dB for N = 2, 4, 8, 16, 32,

respectively).
For a HOP like Pf = 1lE-6, Pd = 0.9, larger input SNRs are

naturally required to achieve this level of performance. At

these larger input SNRs, the or-ing process is more frequently
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dominated by the signal-bearing channel. Therefore, as the
number N of channels or-ed increases, the required increases in
SNR are less severe with increasing N than for a lower-quality
operating point, such as Pe = 1E-3, Pq = 0.5. For example, for
K=16, M = 1, increasing N from 2 to 32 requires a 1.07-dB SNR
increase to maintain the SOP, whereas only an additional 0.52 dB

is needed at the HOP.

A related observation is that, for a given configuration
(fixed K and M), the increase in SNR required to maintain the
SOP, as the amount of or-ing increases, is more severe for the
larger M values. Thus, for KM = 16, as N increases from 2 to 32,

a 1.07-dB SNR increase (1.38 -~ 0.31) suffices to maintain the SOP

for M = 1, whereas a 3.09-dB increase (4.12 - 1.03) is required
for M = 16. The corresponding increases at the HOP are 0.52 dB
(5.17 - 4.65) for M = 1 versus 2.27 dB (7.54 - 5.27) for M = 16,

as N increases from 2 to 32. The behaviors are similar for the
other values of KM, although the required input SNR p values are
smaller as KM increases, due to the additional observation times

allowed.
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EFFECT OF OVERLAPPING DATA AVERAGES

Each pre-averager output is the result of an accumulation of
the past K data values at its input. Therefore, each adjacent
pair of pre-averager time outputs is rather highly correlated,
especially for large K. However, the or-ing output is the result
of a comparison of N independent pre-averager outputs, with only
the largest surviving. For large N, this competition decreases
the correlation of successive or-ing time outputs, because a
different channel may dominate the or-ing decision each time
sample (see appendix H). This decrease in correlation suggests
that the or-ing output should be sampled more often than once
every K samples, which corresponds to block averaging of
non-overlapping adjacent blocks of data, that is, skip factor

J = K.

However, there are two conflicting factors that tend to favor
sampling only once every K samples. The first one is that, for
signal present with a fairly reasonable input SNR, the same
or-ing channel input will tend to dominate the decision, thereby
tending to keep the or-ing output correlation at larger values,

which would obviate the need for more frequent sampling.

The second factor is that when the sampling interval at the
or-ing output is J = K, the effective weighting of the input data
is uniform over the total observation time T. This uniform
effective weighting would be optimum for detection purposes if

there were no or-ing, N = 1, since none of the input time samples
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are preferred over any other Lime samples (see appendix A). At
the other extreme of sampling every successive or-ing time
output, the effective weighting has a trapezoidal shape, peaking
in the interior of the observation interval. This effective
weighting discounts the edge samples in the observation interval

in terms of their effect on the decision variable.

Determining which effect dominates the processor performance
can be ascertained only by conducting simulations to evaluate the
ROCs for a variety of parameter values, including the amount M of
post-averaging. Each of the three results in tables 10, 11, and
12 (for a Gaussian signal) has been obtained under the
simultaneous conditions of keeping the pre-averaging time K
fixed, keeping the post-averaging time (M-1)J £fixed, and,
therefore, keeping the total observation time T = K + (M-1)J
fixed. The three cases considered correspond, respectively, to a
small total observation time T = 24, an intermediate value
T = 64, and a large value T = 256. The amount of or-ing is

varied from N =1 to N = 32.

In tables 10, 11, and 12, the required SNR values p(dB) that
are not enclosed in parentheses correspond to the SOP, whereas
the values in parentheses are for the HOP. The latter sets are
given only for J = K or N = 1, both of which special cases can be
evaluated accurately analytically. The remaining SNR values in
tables 10, 11, and 12 were obtained by simulations using one

million trials; therefore, estimation of the required input SNR

42




to achieve Pe = 1E-6 is not possible with this few trials. (The
HOP values for the top row, N = 1, of table 12 are -3.57, -3.53,

-3.50, -3.48, -3.47 dB, respectively.)

Tables 10, 11, and 12 are plotted in figures 10, 11, and 12.
Perusal of these results reveals that the losses associated with
increased or-ing, N, are not significantly ameliorated by using
J < K, when the amounts of pre- and post-averaging are kept

constant. For example, from table 10, with a Gaussian signal,

'K =8, N= 32, (M-1)J = 16, the improvement in switching from
J =8 toJ =1 1is virtually nil. 1In fact, it is better to use
J = 4 for this particular example with N = 32, that is, 50%

overlap, for which the improvement is approximately 0.1 dB (1.44
- 1.31) relative to J = 8. The reason for this behavior is the
effective trapezoidal weighting. 1In fact, for slight or-ing,
that is, small N, the effective trapezoidal weighting for small J

actually leads to losses in performance relative to J = K.

In the second Gaussian-signal example, table 11, with K = 4,
N = 32, (M-1)J = 60, the gain at the SOP, in switching from J = K
to J =1, is only 0.3 dB (0.68 - 0.36). Smaller N values achieve
even smaller gains. Finally, the long observation time T = 256,
shown in table 12, confirms the trends anticipated earlier. 1In
summary, for moderate amounts of or-ing, overlapped averaging is
not worthwhile. On the other hand, for a significant amount of
or-ing, N >> 1, the gains would be more substantial, and the use

of J < K, say 50% overlap, might be worth re-considering.
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Table 10. Required Input SNR p(dB) for Pe = 1E-3, Pq = 0.5,
K=28, (M-1)J = 16, T = 24, Gaussian Signal

N M=3, J=8 M=5, J=4 M=9, J=2 M=17, J=1
1 ~-1.10 (3.12) -0.86 (3.43) -0.68 (3.66) -0.56 (3.80)
2 -0.43 (3.47) -0.32 -0.18 -0.08
4 0.14 (3.79) 0.14 0.25 0.33
8 0.63 (4.08) 0.57 0.64 0.71
16 1.06 (4.34) 0.97 1.01 1.07
32 1.44 (4.58) 1.31 1.34 1.38

Table 11. Required Input SNR p(dB) for Pf = 1lE-3, Pd = 0.5,
K=4, (M-1)J = 60, T = 64, Gaussian Signal

N M=16, J=4 M=31, J=2 M=61, J=1

1 -3.58 (0.12) -3.54 (0.17) -3.51 (0.20)
2 -2.44 (0.92) -2.50 -2.51

4 -1.45 (1.60) -1.60 -1.61

8 -0.61 (2.19) -0.82 -0.86

16 0.09 (2.70) -0.13 -0.19

32 0.68 (3.14) 0.41 0.36

Table 12. Required Input SNR p(dB) for Pe = 1E-3, Py = 0.5,
K =16, (M-1)J = 240, T = 256, Gaussian Signal

N M=16,J=16 M=31,J=8 M=61,J=4 M=121,0=2 M=241,J=1
1|-6.87 (-3.57) -6.83 -6.80 -6.79 -6.78
2|-5.67 (-2.77) -5.77 -5.78 -5.77 -5.77
4]-4.69 (-2.10) -4.89 -4.92 -4.91 -4.92
8|-3.86 (-1.54) -4.10 -4.16 -4.18 -4.17
16|-3.18 (-1.06) -3.47 -3.53 -3.55 -3.55
32|-2.60 (-0.65) -2.93 -3.01 -3.03 -3.04
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Figure 12. Required Input SNR for P, = 1IE-3, P; = 0.5,
K=16, (M-1)J = 240, T = 256, Gaussian Signal
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SUMMARY

For three different signal models in Gaussian noise, closed
forms have been derived for the PDFs at the output of a pre-
averager followed by an or-ing operation. In the case of a
random Gaussian signal, these forms have been numerically
transformed to yield accurate results for the EDFs at the output
of a post-averager, under both hypothéses H, and Hy, for numerous
values of the parameters of the complete processor. These
results enable investigation of the or-ing processor for false
alarm probabilities Pe in the range of 1E-6 and smaller; there is

no need to resort to lengthy simulations.

Numerous ROCs have been generated, which enable a user or
system designer to quickly assess the losses to be expected from
employing or-ing in a processor. Also, quantitative evaluation
of the tradeoffs between pre-averaging versus post-averaging has
been conducted. Finally, since the enclosed tabulations will
undoubtedly not cover all cases of practical interest, a MATLAB
program for evaluation of the ROCs is presented in appendix I for

additional evaluation and tabulation.

The possibility of employing overlapping data in the post-
averager has been investigated by simulation and found to be
insignificant, at least for moderate values of N, the number of
channels or-ed. For very large values of N, this conclusion may

require reconsideration.
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Numerical results have been presented for KM = 4, 16, 64, and
256. For completeness, the special case of KM = 1 is presented
here. The Pe is given by a combination of equations (37) and
(68), while Pd is given by equations (36) and (69), with
K = 1. For given values of Pe and N, the required threshold
value u can be solved. Then, for a given Pd and the above
solution for u, the required input SNR p can be found, using
a=1/(1 + p), in the explicit form for a Gaussian signal as

1l - Pd

1 - Pf '

(83)

_In(l - o) _ _ _ 1/N -
This relation is plotted in figure 13 as a function of the amount

of or-ing N for both the SOP and the HOP.

The two alternative cases of a phase-incoherent signal and a
deterministic signal in additive Gaussian noise are currently
under investigation. Tabulation of the corresponding ROCs and
tradeoffs between pre- and post-averaging will be conducted in a

similar manner and for the same parameter values as accomplished

here.
13 23
HOP | __—
12 —— 22
/
p(dB) /_/ // p(dB)
for 11 — 21 for

SOP SOP / HOP

10 — 20

9 19

1 2 4 8 16 32 64 128 256
N

Figure 13. Required Imput SNR for K =1, M= 1
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APPENDIX A — OPTIMUM PROCESSING OF TOTAL DATA SET

The observed data in the n-th channel are xn(t) for 1 { t £ T.

There are N channels giving rise to the total data set
{xn(t)} = xn(t) for 1 {n <N, 1< t<T. (A-1)

All N T of these samples are statistically independent of each
other. Some of the following analysis was presented earlier in

reference 3, appendix E.
It is desired to determine the a posteriori probability (APP)
that channel number j contains a signal, namely,

. Pr(j) pj({xn(t)})
Pr(j[{x (t)}) = p.({x (E)])

for 0 < j < N . (A-2)

The case j = 0 corresponds to no signal present. For j > 1,
Pr(j) is the a priori probability of the signal occupying channel
j (during the entire observation interval T), and pj(-) is the
PDF of total observation {xn(t)} when the signal is in channel j.
Denominator pc(-) is the combined PDF of the total data, namely,

the sum of the numerator terms from j = 0 to N.

Let p denote the PDF of individual sample xn(t) for signal
absent, and let p denote the PDF of xn(t) for signal present.

Then, the j = 0 PDF in the numerator of equation (A-2) is

N T
pol{x (8)1) = TT T T ptxp(e)), (A=3)
n=1 t=1




while the other terms are

T N T
pi({x (£)}) = {I [ E(x-(t))} TTTT ptx,(t))
J t=1 J n=1 t=1
n#j

T
= pa(f{x (£)}) T ] L(x,(t)) for 1 <j <N, (A-4)
0 n t=1 j

where auxiliary function

(u)
(u)

)

(A-5)

L(u) =

Lo

The APPs in equation (A-2) are

Pr(0]+) = Pr(0) pg(-)/p (*) ,
T

Pr(j|+) = Pr(3) pg(-)/p (*) T‘I L(xs(t)) for 1 <j <N . (A-6)
t=

Optimum processing corresponds to selection of the channel with
the largest APP. Upon canceling common factors, this rule leads

to consideration of the maximum of N+l quantities according to

T T
max{Pr(O), Pr(l) T | L{x;(t)), ... , Pr(N) TT L(xN(t))} . (a-7)
- t=1 t=1

If the zeroth-order term is largest, a declaration is made that
no signal is present. If the j-th term is largest, j > 0, a

signal is declared present in channel j.

An alternative processing procedure is obtained when channel

identification is not of interest; rather, only the presence or




absence of a signal is relevant. Then, for equal a priori
probabilities, Pr(j) = Pr(l) for 1 < j < N, the APP of signal

present somewhere is, upon use of equations (A-2) and (A-4),

g

N
DT eyt = pr() Shg T TT n(xg(e)) (A-8)
c'’ 31 ¢’ §el e=1

e

po(') N T
j=

The alternative APP of signal absent is

Pr(0) EETTT . (A-9)

Picking the largest of these two quantities is tantamount to a

threshold comparison according to

N T N
Y T Lz (t)) ¢v. (A-10)
t=1

n=1

The two alternative test statistics (A-7) and (A-10) will now be

calculated for the three signal models of interest here.

COHERENT (DETERMINISTIC) SIGNAL

2

' 2
2,-% u 2,.-% (u - m)
p(u) = (2n¢”) exp|- ' {u) = (2ne”) exp|- —m—s——ooI! ,
[ 262) B ( 262 )
£(8) = exp(itm - £25%2/2) ,
mu d2 m
L(u) = exp[-—z- - 5] , a=2, (A-11)

o

The CF corresponding to PDF p(u) is f£(§). For 1 < n < N, the




n-th data processing term in equation (A-7) is

L=}

T
TT bix (t)) = exp(-1d°/2) exp(S 3 x (t)) . (A-12)
t=1 t=1

Q|

Therefore, the optimum test statistic takes the form of threshold
comparison
T >
max 13  x (t)p o v . (A-13)
1<n<N\t=1
Physically, each channel output is summed over the entire
observation interval T, and the largest channel sum is compared

with a threshold for declaration of signal presence and channel

number. If none exceed the threshold, signal is declared absent.

on the other hand, when channel identity is irrelevant,

equations (A-10) and (A-12) yield test

N T
Y oexp(ST x (0)]) L v (a-14)

n=

=

Again, each channel is summed in time, but must now be scaled by
d/¢, exponentiated, and summed over all channels prior to
threshold comparison. For reasonable input SNRs d, the outer sum
on n will be dominated by the exponential with the largest inner
sum on t; in that case, test (A-14) substantially reduces to test
(A-13). This is fortunate, because scaling d/¢ will not likely
be known in practice. Thus, test (A-13) is essentially the

optimum processor for both cases of whether channel

identification is desired or not.




PHASE-INCOHERENT SIGNAL

L

1 -u 1 -1 2(pu)
p(u) = = expl—5]| (u) = =5 exp|—5 -p| I_|—™]|

2 [azJ P 2 (az ] o( o ]
£(E) = —2 exp (o -—1—532—] X T(ET = o2(1 + p)
= 1 - ike? 1 - i&o 8

2( u)% Azgz
L(u) = exp(-p) Io(——%——J H p = 7+ u > 0 . (A-15)
(¢}

For 1 { n { N, the n-th data processing term in equation (A-7) is

3

T 3
TT L(x_(t)) = exp(-Tp) T | 10[2—2- {xn(t)}‘f) ) (A-16)
t=1 t=1
It is important to notice that the arguments of the Bessel
function I, have not undergone any summations, either on t or n.
(This is in contrast to test (A-14), where the arguments of exp
are summed on t before exponentiation.) Therefore, these
arguments in equation (A-16) are typically small, allowing the

approximation Io(z) = exp(zz/4) for small z, since

I(z) =1+ %_ + Li_éil_ 4 oo,
2 22 (2%/4)2 |
exp(z/4) = 1+ 3+ 12440, ... (A-17)

This leads to an approximation for equation (A-16), namely,

T T
exp(~Tp) | | exp|& x_(t)| = exp(-Tp) exp|&s x (t)| . (a-18)
L] ez ) oz & %)

Therefore, the optimum test statistic takes the form of




threshold comparison

T
max {i:: xn(t)} : v . (A-19)

1<n<n (t=1

Although this approximate test has a form identical to equation
(a-13), xn(t) here is a squared envelope, whereas it was an
amplitude quantity previously; see equation (A-15) versus

equation (A-11).

On the other hand, processor (A-10), with the help of

equation (A-18), yields the alternative test

N T N
Y exp(85 Y xp () v (A-20)

The N temporalvsums are scaled by p/cz, exponentiated, and then
summed over all channels. For reasonable input SNRs p, the n-sum
is dominated by the exponential with the largest t-sum; thus,
this test is essentially equivalent to test (A-19). Therefore,
test (A-19) is virtually the optimum processor under both cases

of channel identification.

ACCESSIBILITY TO IN-PHASE AND QUADRATURE COMPONENTS

The statistical model in equation (A-15) corresponds to
sampling the squared envelope of the received data. If, instead,
the in-phase and quadrature components are accessible, input data

value xn(t) in the signal channel should be replaced by the two




In(t)

A(t) coso(t) + gi(t) '

Qn(t) A(t) sine(t) + gq(t) ' (A-21)

where amplitude A(t) is non-random, RV ©(t) is uniformly
distributed over 2n, and gi(t) and gq(t) are independent,
identically distributed Gaussian RVs with zero mean and variance

¢2. The joint CF of RVs I_(t) and Q_(t) is

2
£(g,n) = SxpTIEL (1+In (617 = 3 (act) (824n®)%) exp(- §—(&2+n)).
(A-22)
From this point on, it is presumed that amplitude A(t) is

constant, that is, A(t) = A for all t in the observation

interval. The joint PDF corresponding to equation (A-22) is then

2 .2 .2 2. .2.%
1 I“+0"+A A(I+Q7)
E(I'Q) = expl- =—=5—| 1 e . (A-23)
2noz ( 20 ) o( 62 )

Since this expression doesn’t factor in I and Q, the in-phase and
quadrature components are statistically dependent on each other.
However, equation (A-23) depends only on the combination I2 + Qz,
and not on I or Q separately; any optimum processor derived using
the joint PDF (A-23) must prbcess the accessible data In(t) and
Qn(t) in the form Ig(t) + Qi(t). In fact, if one identifies
original data xn(t) = [Ii(t) + Qi(t)]/z, the resulting PDF p(u)

for xn(t), as obtained from equation (A-23), is precisely




equation (A-15), where p = %Aé/az. The end result is that
accessibility to in-phase and quadrature data values (A-21) would

yield the same optimum processor as that required to use squared

envelopes {xn(t)} directly.

RANDOM GAUSSIAN SIGNAL

1 -u 1 -u
p(u) = =5 exp|—]| » p(u) = 55— exp|—5——]|
0’2 (0’2) 0'2 + 22 [0'2 + gz)
£(8) = ' ; , x (t) = o2(1 + p)
1 - i (1 + p)
1 2,2
L(u) = T+ exp(l : S fiJ ; p=0/¢", u>o. (A-24)

The n-th data processing term for 1 < n { N in equation (A-7) is

4

i z%f x,(£)) (a-25)
62 t=1 "

+

LS -7
I:I Lix_(t)) = (1 + p) exp(1 -

Therefore, the optimum test statistic takes the form of threshold
comparison

T
max {Z:j xn(t)} 2V (A-26)

1<n<N (E=1

Although this test has a form identical to test (A-13), xn(t) is
an envelope-squared quantity here, whereas it was an amplitude

quantity previously; see equation (A-24) versus equation (A-11).




On the other hand, processor (A-10) yields the alternative

test

N p 1 >
y exp(1 s 3 > . xn(t)) <V - (A-27)
o

n=1

The N temporal sums are scaled, exponentiated, and then summed
over all channels. For reasonable input SNRs p, the n-sum is
dominated by the exponential with the largest t-sum, and.this
test is essentially equivalent to test (A-26). Thus, test (A-26)
is virtually the optimum processor under both cases of channel

identification.

ACCESSIBILITY TO IN-PHASE AND QUADRATURE COMPONENTS

The statistical model in equation (A-24) corresponds to
sampling the squared envelope of the received data. 1If, instead,
the in-phase and quadrature components are accessible, input data
value xn(t) in the signal channel should be replaced by the two

RVs

In(t) ai(t) + gi(t) ’

Q,(t) = a (t) + g (t) , (a-28)

where all the quantities are independent zero-mean Gaussian RVs,

with signal samples a; and aq having variance 22, while noise

samples 9; and g_ have variance az.

q



The joint PDF for the RVs in equation (A-28) is obviously

2 2
1 I+ 0Q
(1,0) = —+ — exp[- 29 . (A-29)
E 2n(02+32) ( 2(02+gz))

Thus, In(t) and Qn(t) in equation (A-28) are independent RVs.
More importantly, PDF (A-29) depends only on the combination

I2 + Qz, and not on I or Q separately; any optimum processor
derived using joint PDF (A-29) must process the accessible data
I_(t) and Q (t) in the form I2(t) + Q2(t). In fact, if one
identifies original data value xn(t) = [Ii(t) + Qﬁ(t)]/Z, the
resulting PDF p(u) for x (t), as obtained from equation (A-29),
is precisely equation (A-24), where p = gz/cz. The end result is
that accessibility to in-phase and quadrature data values (A-28)

would yield the same optimum processor as that required to use

squared envelopes {xn(t)} directly.

A-10




APPENDIX B - ON THE USE OF CASCADED FAST
FOURIER TRANSFORMS FOR DISTRIBUTION CALCULATION

The PDF of or-ing output v(t) is often available in closed
form, albeit complicated, for signal present as well as signal
absent; see equations (32) and (33). For independent inputs to
the post-averager, that is, skip factor J = K, the CF of the
post-averager output is the M-th power of its input CF. In order
to find the post-averager output PDF and EDF, its input PDF must
be Fourier transformed to find the corresponding input CF, then
raised to the M-th power, followed by another Fourier transform
back to the density or distribution domains. This cascaded FFT
operation requires care in its evaluation in order to control

aliasing errors.

Let p(u) be the post-averager input PDF of interest. If this
function is sampled at increment Au' and Fourier transformed, the

result is an approximation to desired CF
£(8) = [ du exp(iZu) p(u) , (B-1)
namely, continuous function

z - . - 2n -
E(g) = o, Y exp(i&na ) p(na,) = me[a - m A] . (B-2)

n u

This aliased CF £(&) has period 2n/Au in §. In order to minimize
the aliasing inherent in (&), sampling increment 8, must be
taken small enough to separate the lobes in equation (B-2) and

avoid significant overlap.



Now, the aliased CF £(%) will be evaluated at special

selected intervals, namely,

= (2nk _ .
f(m] = 8, Xr:lexp(lznkn/Nl) p(nd) for 0 < k < N;-1 , (B-3)

which covers one period of £(%). Ny and k are integers.

The samples of p(u) must be taken far enough out in u that
the two neglected tails yield insignificant truncation errors.
If the number of u samples exceeds Ni» the sample at u = nAu can
simply be prealiased into bin (n MODULO Nl)' since the facfor
exp(iZukn/Nl) treats all p(u) samples separated by N, 8, equally.
Thus, the truncation error in u can be controlled to any desired
degree by taking enough samples of PDF p(u) on its tails. Equa-

tion (B-3) can be accomplished numerically by an Nl—point FFT.

Proper selection of sampling increment Au can be achieved by
looking at a plot of the magnitude of equation (B-3); see figure

B-1. The right skirt of the desired lobe centered at § = 0

1

-
1 1

0 N¢/2 N4

Figure B-1. Magnitude of Approximate CF f




(k = 0) will cross the left skirt of the aliasing lobe centered
at E=2n/bu (k = Nl) at & = n:/Au (k = N1/2). However, it is not
necessary that |E(&)| be extremely small at this crossover at

k = N1/2. Rather, it is necessary that the extrapolation of the

left skirt of the aliasing lobe be very small at § = 0 (k = 0);
this result can be visually observed. If origin value V of the
extrapolation (dashed curve) is not sufficiently small, then Au

must be decreased and the procedure repeated before going on.

The magnitude of the absolute error of equation (B-2),
namely, |£(%) - £(&)| for 0 < & < n/8, is typically (but not
always) less than the error at £ = 0. Thus, estimating and
controlling this origin error (by means of Au) is an essential
step. This error can be measured guantitatively by printing out
£(0). 1ts discrepancy from the desired value £(0) = 1 can serve
as an indicator whether to increase or decrease Au before

proceeding any further.

Notice that FFT size N,y has nothing to do with the accuracy
of approximation £ in equation (B-3). Rather, N1 merely sets the

increment

b, = (B-4)

at which samples of £(f) are taken in the { domain according to
equation (B-3). However, Ny will become a very relevant

parameter in the remaining part of the cascade FFT procedure.



Once a satisfactory value of Au has been ascertained (by
trial and error) in order to realize a sufficiently small error
in £(0), the approximation to the post-averager output CF is
computed at the same selected intervals acdording to

£ (&%)

M

[E(ﬁ’l"z )] for 0 < k < N,-1 . (B-5)
u

(The values for k > N1/2 correspond to negative & values.)
Although the relative error of f in the neighborhood of k = Nl/z
is 100%, these values are suppressed to insignificance by the
M-th power. However, the small error in F at k = 0 is magnified
by a factor of approximately'M, and shows up in approximation £f.
Therefore, large values of M may require that Au be decreased
even further in anticipation of this inherent error magnification

caused by the M-th power in equation (B-5).

The approximation to the post-averager output PDF is given by
continuous function (inverse Fourier transform)
Nl—l

p(u) = 7% b, z:% exp(-iukAE) E(RAE) . . (B-6)

=

This function has period Zn/AE = NlAu in u. In order that the
inherent aliasing lobes in p(u) not severely contaminate the
approximation, period NlAu must be made large enough that the
aliasing lobes of p(u) do not overlap significantly. This can be

ascertained by computing a?proximation pf{u) at the selected

points uj = j &8 j Zn/(NZAE), getting

u




N,-1

. 1
2nj 1 s 2nk . _ _
P = ————-E exp(-i2njk/N,) £ for 0 < j £ N,-1,(B-7)
[NzAa] Ny8y %=0 2 (Nl Au) 2

which covers one period of p(u). This can be done by an Nz—point
FFT. 1If N, < Ny, simply prealias g(an/(NlAu)) into bin

(k MODULO Nz), since the exponential factor exp(—iank/Nz) treats
all f samples separated by N, equally. The u-increment in

equation (B-7) is

5 = =1 (B-8)

in terms of the original sampling increment Au on input PDF p(u).
Integer N2 can be taken larger or smaller than Nl' since it
merely controls the increment Su at which approximation p is

computed in equation (B-7).

In the special case N2 = Nl' then su = Au’ which is the same
sampling increment used on input PDF p(u). Since the post-
averager output is the sum of M variables, the standard deviation
is M;5 larger than at the summer input, making the output PDF

spread over a larger range. If 8, was small enough to track

p(u), then Su = Au is probably fine enough to track p(u).

Integer N, has no effect on the accuracy of approximation p.
However, integer Ny in FFT (B-3) now has a significant effect on
the accuracy of the calculated PDF at the post-averager output,

namely, equation (B-6). Period Nlau of p(u) must be larger than




the extent of the actual unknown output PDF. This aliasing
effect in p(u) can be observed by plotting equation (B-7), which
covers one period, and looking for overlap of the PDF tails
before they have sufficiently decayed. Since the period of p(u)
is NlAu' it can be increased only by increasing Ny because Au
has already been selected as large as possible without causing

significant aliasing in £(E).

A limitation could arise at this point. If Au had to be
chosen very small because input CF f£() was a very slowly
decaying CF (see equation (B-2)), N, may have to be so large that
sufficient storage is not available to conduct Nl—point FFT
(B-3). (For example, PDFs (56) and (71) behave as u™"7! as
u > 0+.) One possibility is then to break p(u) into the sum of
two parts, the first being a simple analytic function that takes
on the highest singularities of p(u) and has a known closed-form
Fourier transform. The second part, which is smoother in u, will
have a Fourier transform that decays faster and can profitably be

numerically transformed via an FFT. The sum of the two Fourier

transforms is the approximation to the desired CF £(§).

For present purposes, where false alarm and detection
probabilities are of interest, one does not actually compute PDF
p in equations (B-6) or (B-7), but instead proceeds directly from
CF £ to the corresponding EDF. This accurate efficient procedure

is given in reference 9. Nevertheless, the criterion above for

choosing FFT size Ny is still directly relevant.




APPENDIX C - MOMENTS OF CHARACTERISTIC FUNCTION (72)

The CF of or-ing RV v(t) for a random Gaussian signal and

K=11is

_ it 1 i} _
£08) = (1) 4 [(a_mN + (1_1%_1) , a=1/(1+5p) , (c-1)

under Hl; see equation (72). 1In order to determine the moments

of v(t), consider the following development:

J

(b-i&). = T [(b-i&+j-1) , (C-2)

J > 1
J:

giving

J
In[(b-iE);] = Z:% 1n(b+j-1-ik)
J=

J ] J ik
- %;% 1n(b+j-1) + Z;; 1n(1 - 513:1)

J_
RIS ol | )" = tntm,) - 5 GRS g o)
= 3 - kbr3-1) = inlibl, — Tk Bl
3=1 k=1 k=1
(Cc-3)
where
J 1
B (J,b) =) , —=— for k > 1. (C-4)
J=1 (b+j-1)
From equation (C-3), there follows
b-iE), = (b ( = 13k b 5
(b-1&), = (b), exp(- = g (3,0)) . (c-5)

k=1

c-1




Now, identifying J » N, b » a in equation (C-5), one has

i&_ _ (12)
Wy-1 iy = e '(—a)— exp(:: g (N,a)] . (C-6)
On the other hand, identifying J » N-1, b » 1 in equation (C-5),
BE 6 (v-1,1) . (c-7)

Now, CF fvl(ﬁ) in equation (C-1) is given by the sum of equations

(C-6) and (C-7).

To simplify the two relations in equations (C-6) and (C-7),

the following expansion (reference 13, appendix A) is used:

«©

exp(%Z% un* B (3:0)) = T (i8)% v (3,b) , (c-8)

where coefficients

k
Yo(3/B) = 1, m(3,b) = { T2 B5(3,b) m_5(3,b) for k 2 1. (C-9)
J=

Use of equation (C-8) on equations (C-6) and (C-7) gives CF

(C-1) as

f,1(8) = T Z:: (10 4 (n,a) + - (18)% v, (8-1,1). (c-10)

The moments {pv(k)] of or-ing output v(t) are then

immediately available as




p (k) (L)
k! (a)N

yk_l(N,a) + yk(N-l,l) for k > 1 . (C-11)

The cumulants, xv(k), of v(t) can be readily found by using the
recursion in reference 13, equation (C-7):
k-1 k=1

X0 = (k) - 3 (5Y) xo(k=3) wy(3) for k 21 . (c-12)

Defining normalized statistics

p (k) = w (k)/kt X (k) = X, (k)/(k-1)1 , (€-13)
v v Xy Xy

equation (C-12) becomes (also, see reference 13, equation (C-9))

k-1
X, (k) = k g (k) - Zi X, (k=3) p,(3) for k > 1 . (c-14)
i= .

In summary, if moments {yv(k)} and cumulants {xv(k)} of
or-ing output v(t), with signal present and K = 1, for order
k =1 to J are of interest, the following calculations are

required, with a = 1/(1 + p):

from equation (C-4), evaluate {Bk(N,a)} up to k = J-1;
from equation (C-4), evaluate {Bk(N—l,l)} up to k = J;
= J-1;

from equation (C-9), evaluate {yk(N,a)} up to k
from equation (C-9), evaluate {yk(N—l,l)} up to k = J;
from equation (C-11), evaluate moments {yv(k)} up to k = J;

from equation (C-12), evaluate cumulants {xv(k)} up to k = J.

C-3/(C-4 blank)




APPENDIX D - ROCS FOR KM = 4, RANDOM GAUSSIAN SIGNAL

This appendix contains the ROCs for or-ing with pre- and
post-averaging, when the time-bandwidth product KM is fixed at 4;

the possible combinations (from table 1) are repeated here:

K M N

4 1 1,2,4,8,16,32
2 2

1 . 4

For N = 1, only the product KM matters; the first plot in this
appendix covers this special case, under the labeling K = 4,

N =1, M=1. The other 5 values of N, along with the 3 possible
combinations of K and M, yield 15 additional ROCs, for a total of

16 ROCs in this appendix.
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APPENDIX E - ROCS FOR KM = 16, RANDOM GAUSSIAN SIGNAL

This appendix contains the ROCs for or-ing with pre- and
post-averaging when the time-bandwidth product KM is fixed at 16;

the possible combinations (from table 1) are repeated here:

N

1,2,4,8,16,32

NSO R
oM =

For N = 1, only the product KM matters; the first plot in this
appendix covers this special case, under the labeling K = 16,
N =1, M= 1. The other 5 values of N, along with the 5 possible

combinations of K and M, yield 25 additional ROCs, for a total of

26 ROCs in this appendix.
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Figure E-4. ROCs for K= 16, N=8, M= 1

Figure E-3. ROCs for K= 16, N=4, M= 1
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Figure E-7. ROCs for K=8, N=2, M= 2
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Figure E-12. ROCs for K=4, N=2, M= 4

Figure E-11. ROCs for K=8, N=32, M= 2
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Figure E-19. ROCs for K=2, N=8, M= 8
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Figure E-23. ROCs for K=1, N=4, M = 16
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APPENDIX F - ROCS FOR KM = 64, RANDOM GAUSSIAN SIGNAL

This appendix contains the ROCs for or-ing with pre- and
post-averaging when the time-bandwidth product KM is fixed at 64;

the possible combinations (from table 1) are repeated here:

K M N
64 1 1,2,4,8,16,32
32 2
16 4

8 8

4 16

2 32

1 64

For N = 1, only the product KM matters; the first plot in this
appendix covers this special case, under the labeling k = 64,
N=1, M= 1. The other 5 values of N, along with the 7 possible
combinations of K and M, yield 35 additional ROCs, for a total of

36 ROCs in this appendix.
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APPENDIX G - ROCS FOR KM = 256, RANDOM GAUSSIAN SIGNAL

This appendix contains the ROCs for or-ing with pre- and
post-averaging when the time-bandwidth product KM is fixed at

256; the possible combinations (from table 1) are repeated here:

K M N
256 1 1,2,4,8,16,32
128 2
64 4
32 8
16 16
8 32
4 64
2 128
1 256

For N = 1, only the product RM matters; the first plot in this
appendix covers this special case, under.the labeling K = 256,
N =1, M= 1. The other 5 values of N, along with the 9 possible
combinations of K and M, yield 45 additional ROCs, for a total of

46 ROCs in this appendix.
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Figure G-35.

ROCs for K =4, N = 16, M = 64
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APPENDIX H - STATISTICAL DEPENDENCE OF OR-ING
OUTPUT v(t) AT SEPARATED TIME INSTANTS

The initial part of this appendix gives the results of a
short simulation study of the covariance of the or-ing output
v(t) at time separations less than K, while the second part
details an analytic study of the conditional probability of the

or-ing output v(t) at two separated time instants.

COVARIANCE OF OR-ING OUTPUT

The particular numerical case investigated here is K = 4, for

which the pre-averager outputs are
yn(t) = xn(t) + xn(t—l) + xn(t-z) + xn(t—3) for 1 < n < N, (H-1)
and the or-ing output is

v(t) = max{yl(t),...,yN(t)} . (H-2)

The results of a simulation for hypothesis HO' noise-only, using
50,000 independent trials, and using either exponential, flat, or

Gaussian RVs for inputs {xn(t)}, are listed in table H-1. For

special case N 1, no or-ing, there follows v(t) = yl(t), which
is a sum of K independent inputs; then, v(t) has a simple

triangular covariance function, going linearly to zero at delay
I = K. This effect is confirmed by the N = 1 simulation results

for the covariance coefficient in table H-1.




For larger N, where there is severe competition to get
through the "greatest-of" device, there is more randomness
between adjacent time values of v(t). This causes the covariance
coefficients to decrease more rapidly with the time separation I.
Then, it may be more costly to increase J above K/2 (roughly), at

least for large N.

Under hypothesis Hy, as the input SNR increases, the one
signal-bearing channel tends toward dominance of the greatest-of
device; therefore, the covariance of v(t) should tend back
towards the triangular shape as the input SNR increases.
However, since the processor does not know whether H, or H; is
prevalent, it may be operating on noise-only samples; this
suggests keeping skip factor J smaller than K in order to lessen

losses.

Table H-1. Estimated Covariance Coefficients for K = 4

I 0 1 2 3 4
N
1 1 .750 .499 .250 .002 exponential
2 1 .719 .466 .231 .014
4 1 .680 .418 .195 .007
8 1 .643 .375 .166 .012
1 1 .750 .501 .252 .003 flat
8 1 .536 .266 .097 -.005
1 1 .749 .499 .248 -.002 Gaussian
8 1 .553 .278 .104 -.003




CONDITIONAL PROBABILITY OF OR-ING OUTPUT

The following analysis makes no assumptions about the
statistics of the inputs {xn(t)} except independence. However,
the particular numerical example considered will presume zero-
mean Gaussian noise; although not done here, the extension to
signal-present is obvious. The parameters M and J are not
relevant here, because post-averaging is not yet of concern at

the or-ing output v(t).

The pre-averager outputs in the n-th channel at two separated
time instants K and K+I are

Yo (K) = x (1) + --- + x (K) ,

yn(K+I) = xn(1+1) + e 4 xn(K+I) . (H-3)

The integer variable I lies in the range 0 £ I <K for this
analysis. Therefore, the covariance coefficient between
pre-averager outputs yn(K) and yn(K+I) is pY(I) =1- 1I/K.

The corresponding or-ing outputs are

v(R) = max{y;(K), ... , yy(K)} =

= max{xl(l) + e 4 xl(K), cee o xN(l) + eoe 4 xN(K)} (H~-4)

and




V(RK+I) = max{yl(K+I), P yN(K+I)} =

= max{x1(1+1) +oo ot xl(K+I), ces ot xN(1+I) oot xN(K+I)} . (H-5)

At this point, define three disjoint subsequences

A = xn(l) + e+ xn(I) ’
Bn = xn(I+1) +.--' + xn(K) R
'Cn = xn(K+1) + e 4+ xn(K+I) . (H-6)

Since the inputs are independent and the sequences are disjoint,
every RV {Al, Bl’ Cl, cee g AN’ BN’ CN} is independent of every

other one.

Let py and Cx be the PDF and CDF, respectively, of pre-
averager output yn(t) when it is composed of K terms, as in

equation (H-3). Then, the joint cumulative probability of the

two or-ing outputs (H-4) and (H-5) is

Pr{v(K) < o, V(K+I) < B} =

= Pr{A;+B <a,..., Ay+By<a, Bi+C;<B ..., By+Cy<B) =

= [Pr{A;+B;<e, B;+C;<B}1" = [fdu pp_;(u) cp(a-u) c (B-uw) 1V, (H-7)

At the same time, the ordinary first-order CDF is

Priv(K)<a} = [cgle)]” . | (H-8)

Therefore, the conditional probability of interest is




J du py_;(u) c;(o-u) cy(B-u)
CK(u)

_ N
Pr{v(R+I)<B|v(K)<a} = ] = [Q(a,ﬁ)]N

(H-9)

This physically-meaningful measure of dependence needs only one
integral evaluation once PDF py and CDF c, are available. (By
contrast, the covariance coefficient of v(t) requires much more
numerical effort.) Notice that this conditional probability goes
to zero as N » », that is, as the amount of or-ing increases,
regardless of the value of separation I > 0. Thus, increased
competition at the or-ing input leads to more independent or-ing

outputs, even for I = 1, an adjacent time sample.

As checks on this result, for I = 0, then A_ =0, C_ = 0,

Po(u) = §(u), co(u) = U(u), and there follows

v
Q

cK(min{a,B}) 1 for B
Q(Gyﬁ) = c (d) = . (H_lo)
K Cg(B)/cpla) for B < o

On the other hand, for I = K, there follows

Cpla) cp(B)
CK(a)

Pe_(u) = py(u) = 8(u) , Q(a,B) = = cg(B) . (H-11)

Both of these special cases are obviously correct.

As a numerical example, consider zero-mean unit-variance

Gaussian noises {xn(t)}. Then,

H-5




N

u

1 exp(-— 2—1] ' CI(u) = i’(ﬁ) R

p.(u) = ——
I (2n1)%

‘ C(R_T)% (k_T)%
Q(e,8) = graovry | at ¢ce) #(* (B-1)t) 5(B=tBzl)E) | (n-12)
A couple of numerical examples of conditional probability (H-9)

follow, which confirm the increased statistical dependence as

separation I tends to zero.

w=1, B=1, K=4:
I ! 2 3 4

s

0(x,B) | .854 .790 .738  .691

«=2, B=2, K=10:

I | 1 2 3 4 5 6 7 8 9 10
0(«,B) | .920 .887 .861 .838 .818 .800 .783 .767 .751 .736

H-6




APPENDIX I - MATLAB PROGRAM FOR EVALUATION
OF ROCs FOR RANDOM GAUSSIAN SIGNAL

The parameters of interest are entered at the top of the
program listed here. The sampling increment du is applied
directly to the PDF of v(t) and controls the spacing of the
aliasing lobes in the calculated CF of v(t). If the lobes are
too close, yielding significant aliasing in the CF domain, the
value of du must be decreased. The range of input SNR values to

be investigated is governed by rmin and rinc.

For each input SNR value (isnr), the magnitude of the CF of
v(t) is first plotted, so that the aliasing lobes can be viewed;
if the lobes are too close, du must be decreased and the CF
rerun. When satisfactory CF lobe spacing has been achieved,
calculations continue with the corresponding EDF of w(t), which
is plotted. 1If aliasing is a problem in this EDF domain, the
size n of the FFT must be increased. Finally, when satisfactory
values of du and n have been realized for all values of SNR of'
interest, the ROCs, namely, Pd versus Pf, are plotted for all the

input SNR values considered.

To find the required input SNR necessary to achieve a
specified Pe and Pyr these probability values must then be
entered, along with the number of the ROC that is cldsest to the
operating point of interest. Linear interpolation is conducted,

and the required input SNR is printed out.

I-1




clear, clf % NUONC TR 11,150

b=0; % Additive bias tow

du=.1; % Sampling increment in u
n=2"12; % FFT size

k=4 ; % K, amount of pre-averaging
nc=1; % N, amount of or-ing

mc=1; % M, amount of post-averaging
mmin=-3; % Minimm SR (dB)

rinc=1; % Increment in SNR (dB)
mm=17; % Number of ROCs

disp('b du n; kc nc mc:')
disp([b du n; kc nc mc}]) :
xg={1le-6 le-5 1le-4 .001 .002 .005 .01 .02...
.05 .1 .2 .3 .4 .5];
yog=[le-6 le-5 1le-4 .001 .002 .005 .01 .02...
.05.1.2 .3 .4.5.6.7.8.9.95 .98 .99];
xg=phiinv(xg) ;
yo=phiinv (yg) ;
[Xg, Ygl=meshgrid(xg,y9) ;
Magcf=zeros(n,1);
EDF=zeros(n,1l);
Pd=zeros (n, mum+l) ;
nl=n-1; n2=n/2; kcl=kc-1; ncl=nc-1; n3=n2+1;
m=pi/n; 2=du/2;
arg=mn.*(1l:n2)';
sinc=sin(arg) ./arg;
disp("' isnr edf0 - 1')
for isnr=0:rmm
rhodb=rmin+rinc* (isnr-1) ;
rho=10"(.1*rhodb) ;
if (isnr==0) rho=0; end
as:l/ (1+Ih.0),‘
X=zeros(n,l)+i*zeros(n,1);
mearv=0; cdfk=0; k=-1;
while(cdfk<.5 | area>le-20)
k=k+1; uk=durk; w2=uk+d2;
au=as*u2; pl=exp(-u2); e0=p0;
pl=exp(-au); el=pl;
for j=1l:kcl
pO=p0*u2/3j; el=e0+p0;
pl=pl*au/j; el=el+pl;
ed
cO=max (1-e0,0); cl=mex(1l-el,0);




cdfo=cdfk; cdfk=cl*c0"ncl;
area=cdfk-cdfo;
j=mod (k,n) ;
X(§+1)=X(j+1)+area;
nmearnv=meanv+area*uk; % uk, not w2
a,ﬂ .
X=fftgreen(X);
Magcf=10g10 (X. *conj (X) +1e-50) *.5;
plot (Magef)
axis([1l n+l -16 0]); ogrid on
pause(1)
di=2*pi/ (n*du) ;
X(2:n3)=conj (X(2:n3) ) ./sinc(1:n2);
X (n2+2:n)=0;
X=X."nc;
X(1:n3)=X(1:n3) . *exp (1*b*dd* (0:n2) ') ;
IMEArW=IMEArV IIC+b;
X(1)=0;
X(2:n3)=X(2:n3)./(1:n2)';
X=fftgreen(X);
a=.5+mearw/ (n*du) ;
edfO=a+imag (X(1)) /pi;
disp([isnr edf0-1])
k=(1:n)*;
edf=a- (k-1) ./n+imag (X (k) ) . /pi;
X=edf;
EDF=10g10 (abs (edf) +1e-30) ;
plot (EDF)
axis([1 n+l -18 0]); orid on
pause(1)
edf=real (X(k));
edf=min(edf,1-1e-12);
edf=max (edf, 1le-12);
Pd(:,isnr+l)=phiinv(edf);
exd
besp
pause
clf
hold on
set (gcf, 'PaperPosition', [.25 .25 8 10.5])
plot (xg,Yg, 'k')
plot (Xg,vg, 'k')
plot (xg,xg, 'k') % zero SNR ROC
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plot(Pd(:,1),Pd(:, [2:mm+1]), 'k’)
axis([xg(1l) xg(14) yo(l) yg(21)])
axis off
while 1 :
T=input ('pf pd isnr: ');
if T(1)=0 kreak; end -
pft=phiinv(T(1));
pdt=phiinv(T(2));
isnr=T(3);
for j=0:n1

if(Pd(j+1,1)<pft) break; end
ed
x1=Pd(j+1,1);
x2=rd(j,1);
as=Pd(j+1, isnr+l) ;
bs=Pd(j+1, isnr+2) ;
cs=Rd(j,isnr+l);
ss=(cs-as)/ (x2-x1);
al=pdt-ss*pft;
fs=(al+ss*xl-as)/ (bs-as);
re=rmin+rinc* (isnr-1+£s);
disp([T £s xc])

% function y=phiinv(x) for 0<x<1
% y=1.414213562373095*erfinv(2*x-1) ;
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